

AQA Computer Science A-Level
4.3.3 Reverse Polish

Intermediate Notes

www.pmt.education

Specification:

4.3.3.1 Reverse Polish – infix transformations

Be able to convert simple expressions in infix form to Reverse Polish
notation (RPN) form and vice versa. Be aware of why and where it is used.
Eliminates need for brackets in sub-expressions. Expressions in a form
suitable for evaluation using a stack. Used in interpreters based on a stack
for example Postscript and bytecode.

www.pmt.education

Infix Notation
Humans prefer to use in-fix order of notation. This means that the
operand is either side of the opcode. However, longer equations
can cause confusion over the order of execution.

Example 1:

3 and 5 are the operand and + is the opcode . The answer is 8.

Example 2:

These expressions can either use brackets or BODMAS to
alleviate the confusion.
According to BODMAS, the following equation is produced.

www.pmt.education

However, brackets could be added to produce an equation with a different answer.

Reverse Polish Notation
Reverse Polish Notation (RPN) is a postfix way of writing expressions .
This eliminates the need for brackets and any confusion over the order
of execution. Rather than the opcode going in between the operand, a
postfix expression writes the opcode after the operand. When the
opcode has both pieces of operand immediately preceding it, the
operation proceeds.

Example 1:
This is an infix equation.

This is its postfix equivalent.

They both give the answer 8.

www.pmt.education

Example 2:
This is an infix equation. Its answer is 11.

This is its postfix equivalent.

Proof

The / sign has two pieces of operand immediately before it (6 and 3).

 It performs the operation 6 / 3, which equals 2.

www.pmt.education

Now the postfix expression reads 9 2 +. The 9 and the 2 are immediately before the
plus sign.

They are added together to make 11, the same as its infix equivalent.

Converting from Infix to Postfix
Infix expressions can be converted into
postfix by the postorder traversal of an
expression tree . Simpler ones can be
done by observation.

www.pmt.education

Example 1:
The following expression needs to be converted into its postfix
equivalent.

The first operator is selected.

The minus sign is our first opcode . Because of the brackets around the operation, the
two pieces of operand are 12 and 6. 12 - 6 is the same as 12 6 - in RPN, so this part of
the equation can be replaced.

www.pmt.education

The next operator can be looked at.

It is a divisor. The two pieces of operand surrounding it is 3 and the result of y 6 -.

This may seem confusing, but remember, y 6 - can be evaluated (with a value of y), so
it can be treated as a single term.

www.pmt.education

The next operator is observed.

The operand surrounding the multiplication sign is the result of the postfix expression ((y
6 -) 3 /) and the result of the infix expression (x + 4). Again, this is less complicated than
it looks if each operand is taken as one term.

It would be tempting to say that we have found the postfix equivalent - there isn’t an
operator to the right of the multiplication symbol. However, if we look back at the original
equation, we can see that the + sign needs to be dealt with. Original equation:

www.pmt.education

Current equation:

The operand surrounding the plus sign is x and 4.

Now all the opcode has been considered, the brackets can be removed as they are
superfluous.

www.pmt.education

Stacks
Stacks can be used to evaluate
postfix equations. The algorithm
goes along the array - operand is
pushed onto the stack, whilst
opcode causes two items to be
popped off the stack with the result
of the operation pushed onto the
stack.

Example 1:
The following RPN expression needs to be evaluated:

The leftmost item is selected first.

www.pmt.education

5 is the operand so it is pushed onto the stack.

The next item is looked at.

www.pmt.education

3 is also operand so it is pushed onto the stack.

The next item is investigated.

www.pmt.education

The minus sign is an operator . Therefore two items are popped off the stack - they will
be the operand for this operation. First pop:

The 3 has been labelled as operand 2, this will help show the order of operation.
Second pop:

www.pmt.education

Now we have the opcode and the operand, an equation can
be evaluated.

The result is then pushed onto the stack.

www.pmt.education

Now, the next item is looked at.

4 is the operand so it is pushed onto the stack.

www.pmt.education

The next item is observed.

The addition sign is an operator , so two items are popped off the stack. First pop:

www.pmt.education

Second pop:

The operation can now be performed.

www.pmt.education

The answer is pushed onto the stack.

The next item is considered. There are no more items to consider.

www.pmt.education

The top of the stack is returned as the answer. The algorithm terminates.

RPN Uses

As seen above, RPN can be executed on a stack. Due to
this, RPN is ideal for interpreters which are based on a
stack, e.g. Bytecode and PostScript. For more information,
follow the links listed in the extra resources section.

www.pmt.education

